指针

Go 拥有指针。指针保存了值的内存地址。

类型 *T 是指向 T 类型值的指针,其零值为 nil。

1
var p *int

& 操作符会生成一个指向其操作数的指针。

1
2
i := 42
p = &i

* 操作符表示指针指向的底层值。

1
2
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i

这也就是通常所说的「解引用」或「间接引用」。

与 C 不同,Go 没有指针运算。

pointers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
package main

import "fmt"

func main() {
var p *int
i := 42

p = &i

fmt.Println(p) //0xc00000a0a8
fmt.Println(i) //42
fmt.Println(*p) //42

}

结构体

一个 结构体(struct)就是一组 字段(field)。

structs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
package main

import "fmt"

// Vertex 定义结构体
type Vertex struct {
X int
Y int
}

func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v)
}

结构体字段

结构体字段可通过点号 . 来访问。

struct-fields.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
package main

import "fmt"

type Vertex struct {
X int
Y int
}

func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}

结构体指针

结构体字段可通过结构体指针来访问。

如果我们有一个指向结构体的指针 p 那么可以通过 (*p).X 来访问其字段 X。 不过这么写太啰嗦了,所以语言也允许我们使用隐式解引用,直接写 p.X 就可以。

struct-pointers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
package main

import "fmt"

type Vertex struct {
X int
Y int
}

func main() {
v := Vertex{1, 2}
p := &v
p.X = 1e9
fmt.Println(v)
}

结构体字面量

使用 Name: 语法可以仅列出部分字段(字段名的顺序无关)。

特殊的前缀 & 返回一个指向结构体的指针。

struct-literals.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
package main

import "fmt"

type Vertex struct {
X, Y int
}

var (
v1 = Vertex{1, 2} // 创建一个 Vertex 类型的结构体
v2 = Vertex{X: 1} // Y:0 被隐式地赋予零值
v3 = Vertex{} // X:0 Y:0
p = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
)

func main() {
fmt.Println(v1, p, v2, v3)
}

数组

类型 [n]T 表示一个数组,它拥有 n 个类型为 T 的值。

表达式

1
var a [10]int

会将变量 a 声明为拥有 10 个整数的数组。

数组的长度是其类型的一部分,因此数组不能改变大小。 这看起来是个限制,不过没关系,Go 拥有更加方便的使用数组的方式。

切片

每个数组的大小都是固定的。而切片则为数组元素提供了动态大小的、灵活的视角。 在实践中,切片比数组更常用。

类型 []T 表示一个元素类型为 T 的切片。.

切片通过两个下标来界定,一个下界和一个上界,二者以冒号分隔:

1
a[low : high]

它会选出一个半闭半开区间,包括第一个元素,但排除最后一个元素。

以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:

1
a[1:4]
slices.go
1
2
3
4
5
6
7
8
9
10
package main

import "fmt"

func main() {
primes := [6]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s) // [3 5 7]
}

切片就像数组的引用

切片并不存储任何数据,它只是描述了底层数组中的一段。 更改切片的元素会修改其底层数组中对应的元素。 和它共享底层数组的切片都会观测到这些修改。

slices-pointers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import "fmt"

func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names)

a := names[0:2]
b := names[1:3]
fmt.Println(a, b)

b[0] = "XXX"
fmt.Println(a, b)
fmt.Println(names)
}
输出结果
1
2
3
4
[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]

切片字面量

切片字面量类似于没有长度的数组字面量。

这是一个数组字面量:

1
[3]bool{true, true, false} 

下面这样则会创建一个和上面相同的数组,然后再构建一个引用了它的切片:

1
[]bool{true, true, false}

运行以下示例查看结果。

slices-literals.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package main

import "fmt"

func main() {
q := []int{2, 3, 5, 7, 11, 13}
fmt.Println(q)

r := []bool{true, false, true, true, false, true}
fmt.Println(r)

s := []struct {
i int
b bool
}{
{2, true},
{3, false},
{5, true},
{7, true},
{11, false},
{13, true},
}
fmt.Println(s)
}

切片的默认行为

在进行切片时,你可以利用它的默认行为来忽略上下界。

切片下界的默认值为 0,上界则是该切片的长度。

对于数组

1
var a [10]int

来说,以下切片表达式和它是等价的:

1
2
3
4
a[0:10]
a[:10]
a[0:]
a[:]

运行以下示例查看输出结果。

slices-bounds.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package main

import "fmt"

func main() {
s := []int{2, 3, 5, 7, 11, 13}

s = s[1:4]
fmt.Println(s) // [3 5 7]

s = s[:2]
fmt.Println(s) // [3 5]

s = s[1:]
fmt.Println(s) // [5]
}

切片的长度和容量

切片拥有 长度容量

切片的长度就是它所包含的元素个数。

切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。

切片 s 的长度和容量可通过表达式 len(s)cap(s) 来获取。

你可以通过重新切片来扩展一个切片,给它提供足够的容量。 试着修改示例程序中的切片操作,向外扩展它的长度,看看会发生什么。

slices-len-cap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package main

import "fmt"

func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s)

// 截取切片使其长度为 0
s = s[:0]
printSlice(s)

// 扩展其长度
s = s[:4]
printSlice(s)

// 舍弃前两个值
s = s[2:]
printSlice(s)
}

func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}

nil 切片

切片的零值是 nil

nil 切片的长度和容量为 0 且没有底层数组。

nil-slices.go
1
2
3
4
5
6
7
8
9
10
11
package main

import "fmt"

func main() {
var s []int
fmt.Println(s, len(s), cap(s))
if s == nil {
fmt.Println("nil!")
}
}

用make创建切片

切片可以用内置函数 make 来创建,这也是你创建动态数组的方式。

make 函数会分配一个元素为零值的数组并返回一个引用了它的切片:

1
a := make([]int, 5)  // len(a)=5

要指定它的容量,需向 make 传入第三个参数:

1
2
3
4
b := make([]int, 0, 5) // len(b)=0, cap(b)=5

b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4

运行以下示例查看输出结果。

making-slices.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import "fmt"

func main() {
a := make([]int, 5)
printSlice("a", a)

b := make([]int, 0, 5)
printSlice("b", b)

c := b[:2]
printSlice("c", c)

d := c[2:5]
printSlice("d", d)
}

func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n", s, len(x), cap(x), x)
}

切片的切片

切片可以包含任何类型,当然也包括其他切片。

slices-of-slices.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package main

import (
"fmt"
"strings"
)

func main() {
// 创建一个井字棋(经典游戏)
board := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}

// 两个玩家轮流打上 X 和 O
board[0][0] = "X"
board[2][2] = "O"
board[1][2] = "X"
board[1][0] = "O"
board[0][2] = "X"

for i := 0; i < len(board); i++ {
fmt.Printf("%s\n", strings.Join(board[i], " "))
}
}

向切片追加元素

为切片追加新的元素是种常见的操作,为此 Go 提供了内置的 append 函数。内置函数的文档对该函数有详细的介绍。

1
func append(s []T, vs ...T) []T

append 的第一个参数 s 是一个元素类型为 T 的切片,其余类型为 T 的值将会追加到该切片的末尾。

append 的结果是一个包含原切片所有元素加上新添加元素的切片。

当 s 的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。 返回的切片会指向这个新分配的数组。

append.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package main

import "fmt"

func main() {
var s []int
printSlice(s)

// 可在空切片上追加
s = append(s, 0)
printSlice(s)

// 这个切片会按需增长
s = append(s, 1)
printSlice(s)

// 可以一次性添加多个元素
s = append(s, 2, 3, 4)
printSlice(s)
}

func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}

range

for 循环的 range 形式可遍历切片或映射。

当使用 for 循环遍历切片时,每次迭代都会返回两个值。 第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。

可以将下标或值赋予 _ 来忽略它。

1
2
for i, _ := range pow
for _, value := range pow

若你只需要索引,忽略第二个变量即可。

1
for i := range pow
range.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}

// 忽略第二个变量
for i := range pow {
fmt.Printf("%d\n", i)
}

// 使用 _ 忽略下标
for _, v := range pow {
fmt.Printf("%d\n", v)
}
}

映射

map 映射将键映射到值。

映射的零值为 nilnil 映射既没有键,也不能添加键。

make 函数会返回给定类型的映射,并将其初始化备用。

maps.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package main

import "fmt"

type Vertex struct {
Lat, Long float64
}

var m map[string]Vertex

func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}

映射字面量

映射的字面量和结构体类似,只不过必须有键名。

map-literals.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import "fmt"

type Vertex struct {
Lat, Long float64
}

var m = map[string]Vertex{
"Bell Labs": Vertex{
40.68433, -74.39967,
},
"Google": Vertex{
37.42202, -122.08408,
},
}

func main() {
fmt.Println(m)
}

若顶层类型只是一个类型名,那么你可以在字面量的元素中省略它。

map-literals-continue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
package main

import "fmt"

type Vertex struct {
Lat, Long float64
}

var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
"Google": {37.42202, -122.08408},
}

func main() {
fmt.Println(m)
}

修改映射

在映射 m 中插入或修改元素:

1
m[key] = elem

获取元素:

1
elem = m[key]

删除元素:

1
delete(m, key)

通过双赋值检测某个键是否存在:

1
elem, ok = m[key]

若 key 在 m 中,ok 为 true ;否则,ok 为 false。

若 key 不在映射中,则 elem 是该映射元素类型的零值。

注:若 elem 或 ok 还未声明,你可以使用短变量声明:

1
elem, ok := m[key]
mutating-maps.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package main

import "fmt"

func main() {
m := make(map[string]int)

m["答案"] = 42
fmt.Println("值:", m["答案"])

m["答案"] = 48
fmt.Println("值:", m["答案"])

delete(m, "答案")
fmt.Println("值:", m["答案"])

v, ok := m["答案"]
fmt.Println("值:", v, "是否存在?", ok)
}

函数值

函数也是值。它们可以像其他值一样传递。

函数值可以用作函数的参数或返回值。

function-values.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import (
"fmt"
"math"
)

func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}

func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x*x + y*y)
}
fmt.Println(hypot(5, 12))

fmt.Println(compute(hypot))
fmt.Println(compute(math.Pow))
}

函数闭包

Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。 该函数可以访问并赋予其引用的变量值,换句话说,该函数被“绑定”到了这些变量。

例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。

function-closures.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package main

import "fmt"

func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}

func main() {
pos, neg := adder(), adder()
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2*i),
)
}
}